Experimental evaluation of cryopreservative solutions to maintain in vitro and in vivo infectivity of P. berghei sporozoites
نویسندگان
چکیده
The rodent malaria parasite Plasmodium berghei is an excellent model organism for laboratory-based experimental evaluation of anti-malarial therapeutics prior to studies with human malaria parasites. The rodent model is especially important for evaluation of pre-erythrocytic (PE) stage therapies, especially as current efforts to develop new PE vaccines and drugs is limited by access to P. falciparum and P. vivax sporozoites. Developing a more effective method for cryopreservation of sporozoites would help improve access to sporozoites for laboratories lacking suitable insectary facilities. In this study, P. berghei GFP-expressing sporozoites were purified from infected mosquitoes by manual dissection of salivary glands and different commercially-available, serum-free cryopreservative solutions were evaluated for efficient cryopreservation of the sporozoites. The cryopreservative solutions evaluated included CryoStor CS2, CryoSolutions DX5, CryoSolutions MC, Hestar 200, Voluven, Hetastarch, and Glycerolyte 57. The viability of fresh and post-thaw cryopreserved sporozoites was determined as a function of the relative sporozoite infectivity by infecting HC-04 cells in vitro, monitoring invasion and growth and development of liver stage parasites. Flow cytometer-based counting provided unbiased and fast quantitative assessment of parasite in vitro infection in infected HC-04 and in vivo infectivity was validated by injecting sporozoites IV into mice. CryoStor CS2 delivered the highest post-thaw recovery and infectivity of cryopreserved sporozoites. Sporozoites cryopreserved in CryoStor CS2 achieved 38% complete development of hepatic stages in HC-04 and 100% infectivity in mice. The cryopreservation method described here demonstrates a viable alternative for fresh Plasmodium sporozoites. The use of cryopreserved sporozoites should facilitate greater access to sporozoites for chemotherapeutic and vaccine research.
منابع مشابه
Cutting edge: a new tool to evaluate human pre-erythrocytic malaria vaccines: rodent parasites bearing a hybrid Plasmodium falciparum circumsporozoite protein.
Malaria vaccines containing the Plasmodium falciparum Circumsporozoite protein repeat domain are undergoing human trials. There is no simple method to evaluate the effect of vaccine-induced responses on P. falciparum sporozoite infectivity. Unlike the rodent malaria Plasmodium berghei, P. falciparum sporozoites do not infect common laboratory animals and only develop in vitro in human hepatocyt...
متن کاملPlasmodium berghei sporozoites acquire virulence and immunogenicity during mosquito hemocoel transit.
Malaria is a vector-borne disease caused by the single-cell eukaryote Plasmodium. The infectious parasite forms are sporozoites, which originate from midgut-associated oocysts, where they eventually egress and reach the mosquito hemocoel. Sporozoites actively colonize the salivary glands in order to be transmitted to the mammalian host. Whether residence in the salivary glands provides distinct...
متن کاملMAEBL Is Essential for Malarial Sporozoite Infection of the Mosquito Salivary Gland
Malarial sporozoites mature in the oocysts formed in the mosquito midgut wall and then selectively invade the salivary glands, where they wait to be transmitted to the vertebrate host via mosquito bite. Invasion into the salivary gland has been thought to be mediated by specific ligand-receptor interactions, but the molecules involved in these interactions remain unknown. MAEBL is a single tran...
متن کاملRoles of the Amino Terminal Region and Repeat Region of the Plasmodium berghei Circumsporozoite Protein in Parasite Infectivity
The circumsporozoite protein (CSP) plays a key role in malaria sporozoite infection of both mosquito salivary glands and the vertebrate host. The conserved Regions I and II have been well studied but little is known about the immunogenic central repeat region and the N-terminal region of the protein. Rodent malaria Plasmodium berghei parasites, in which the endogenous CS gene has been replaced ...
متن کاملDevelopment of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy.
The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful developm...
متن کامل